Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Effect of intense pulsed-light therapy on hair regrowth in C57BL/6J mice mediated by WNT/^6;-catenin signaling pathway

Lewen Jiang1,2, Yong Miao1, Zhexiang Fan1, Jin Wang1, Zhiqi Hu1

1Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 51000, China; 2Department of Plastic and Aesthetic Surgery, Maternity & Child Healthcare Hospital, Shenzhen 518116, China.

For correspondence:-  Zhiqi Hu   Email: nfzhiqihu@126.com   Tel:+862061641862

Accepted: 26 April 2018        Published: 28 May 2018

Citation: Jiang L, Miao Y, Fan Z, Wang J, Hu Z. Effect of intense pulsed-light therapy on hair regrowth in C57BL/6J mice mediated by WNT/^6;-catenin signaling pathway. Trop J Pharm Res 2018; 17(5):789-794 doi: 10.4314/tjpr.v17i5.6 Original

© 2018 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To evaluate the effect of low-fluence intense pulsed light (IPL) on hair growth in C57BL/6 mice, and to explore the potential molecular mechanisms of IPL actions on hair growth.
Methods: After low-fluence IPL irradiation was applied to depilated dorsal skin of C57BL/6 mice in the telogen, or resting hair cycle phase, tissue samples were obtained and used for histopathological analysis. Hair growth was analyzed by measuring hair length. In addition, protein expression levels of WNT3A and β-catenin were assayed by western blot.
Results: Low-fluence IPL irradiation promoted hair growth by inducing the anagen, or growth, phase in telogenic C57BL/6J mice. In particular, hair growth analysis suggested that application of low-fluence IPL induced an earlier transition from telogen to anagen phase and prolonged the duration of anagen phase compared to the control group (p < 0.05). Moreover, western blotting assay revealed that WNT3A and β-catenin protein levels were up-regulated compared to the control group (p < 0.05).Conclusion: These findings suggest that low-fluence IPL irradiation may be effective for promoting hair regrowth via activation ofthe WNT/β-catenin pathway, and may, therefore, be a potential novel therapeutic treatment to stimulate hair regrowth.

Keywords: Intense pulsed light, Hair follicles, Hair growth, WNT3a/^6;-catenin pathway

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates